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Abstract

In the paper we discuss modeling and numerical issues that arise in conjunction with anisotropic hyperelastic—plastic
response. Both elastic and plastic anisotropy are included. A particular kinematic hardening rule is proposed and its
predictive capability is investigated. From the numerical viewpoint, we are concerned with the algorithmic conse-
quences of the loss of coaxiality that arises from anisotropy. The numerical investigation shows that significant
truncation errors are introduced if commonly used linearizations of the (classical) exponential Backward Euler rule are
utilized in the presence of non-coaxiality. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Within the context of large strain plasticity and viscoplasticity, the classical concept of multiplicative split
of the deformation gradient has won widespread acceptance in the computational mechanics community in
recent years. This concept gives rise to an evolution law for the plastic part of the deformation gradient as
part of an associative structure, that emanates from the particular form of the dissipation inequality. The
situation is far less clear for the corresponding evolution equations pertinent to the internal variables that
represent hardening. This ambiguity is particularly pronounced for kinematic hardening, which is an issue
that has attracted considerable attention in recent years (e.g. Eterovic and Bathe, 1990; Schieck and Stumpf,
1995; Tsakmakis, 1996; Svendsen et al., 1998; Miinz et al., 1999). Ideally, a number of requirements should
be met by the model in order to become acceptable: (1) Physically sound behavior must be represented, e.g.
the pathological oscillations of shear stresses in simple shear, shown by certain hypoelasticity-based models
employing the Jaumann stress rate, cannot be accepted. (In fact, such behavior is obtained even for hy-
perelasticity-based models with the inappropriate choice of hardening rules; cf. below.) (2) The model should
be thermodynamically consistent, i.e. the dissipation inequality should be satisfied. (3) The back-stress
should preserve symmetry in the spatial format. As it turns out (see also discussion later), it seems difficult to
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satisfy the requirements (2) and (3) simultaneously, at least for the class of models discussed in this paper and
most models proposed in the literature.

Kinematic hardening is anisotropic in the sense that the yield surface can no longer be expressed as an
isotropic function of the stress tensor, and the consequence is that coaxiality between the elastic defor-
mation and the (Mandel type) back-stress is lost. If we also include hyperelastic anisotropy into the for-
mulation, then this will lead to the loss of coaxiality between the elastic deformation and the (Mandel)
stress itself. Furthermore, the Mandel stress on the intermediate configuration will be non-symmetrical in
general. The loss of coaxiality between the different deformation and stress measures, regardless of the
source, is of importance for the proper algorithmic implementation of the rule used for integrating the
evolution equations of the internal variables, in particular the flow rule. In this paper we shall employ
the classical (exponential) Backward Euler rule. In particular, when the logarithmic hyperelastic law, Weber
and Anand (1990), is used, then it is common to exploit the logarithm rules for products of coaxial tensors
in order to achieve an incremental format that becomes virtually identical to that of small strain theory of
plasticity. Although such an algorithm is still consistent (at least first order accurate) in the presence of non-
coaxiality, it may produce truncation errors of significant magnitude. A prime purpose of this paper is to
investigate this issue by way of comparing the ““truly nonlinear’ algorithm with another algorithm that is
based on an appealing linearization.

The paper is organized as follows: after some preliminary remarks on large deformation kinematics, we
propose the hyperelastic-plastic framework with kinematic hardening in Section 2. As part of the prototype
model, we choose a transversely isotropic elasticity law that is linear in terms of the logarithmic strains.
Mixed nonlinear hardening of the Armstrong-Frederick type is chosen; in particular employing the
“plastic-rotation-neutralized” (PRN) format, which is described in some detail. In Section 3, we give the
incremental format of the constitutive relations. The “exact” and properly “linearized” formulations are
outlined. It is also discussed how to compute the algorithmic tangent stiffness (ATS) tensor from the
“local” incremental problem for a given deformation increment. Finally, we present a series of numerical
results for the (homogeneous) simple shear mode, as well as for the unconstrained shear problem. The latter
problem represents a non-homogeneous deformation state and, therefore, requires finite element analysis.

2. Thermodynamics and constitutive relations
2.1. Preliminaries on the kinematics

The main kinematic assumption is the classical multiplicative split of the deformation gradient
F = F - F®, where F” is the deformation from the initial configuration €, ! to the “intermediate” or “in-
elastic” configuration Q, whereas F represents the elastic deformation from Q to the current configuration
Q. Moreover, we consider an auxiliary reference configuration Q,, from which Q can be reached via a
push-forward with the deformation gradient FT ., cf. Fig. 1. The role of this auxiliary configuration will be
explained in the context of kinematic hardening (as discussed later). Depending on the choice of Qg
different “‘neutralized” formats are possible:

e Plastic deformation neutralized (PDN) format, defined by Q. = Qo (Fb, = FP).
e PRN format, defined by Qur = Qprn (Fl; = R? with R® = F° - (UP) ™).
e Unrotated (UR) format, defined by Q. = Q (F? ).

ref —

' Qy is taken as the “computational domain” throughout.
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Fig. 1. Kinematic transformations involved in hyperelasto-(visco) plasticity with kinematic hardening.

The (right) deformation tensors C and C, associated with Q, and Q, respectively, are obtained via the usual
(covariant) pull-back of § from €:

C=F'".F=(F)'.C-F°, C=F"-F (1)

Henceforth, C is denoted the “elastic deformation”. Correspondingly, the second Piola—Kirchhoff (PK)
stress tensors S, and S, associated with €, and €, are obtained via the usual (contravariant) pull-back of
the Kirchhoff stress = from Q:

S, =F'. ¢ FT=(F)".85 - (F)", §=F'. 7. FT" 2)
We also introduce the Mandel stress tensors T and T on Q, and Q, respectively, as:

T=C-$=F -« F'=F)'.T-(F")", T=F-x.F"=C§ (3)
Finally, we introduce the right and left elastic stretch tensors U and »* and Q and Q, respectively, from the
decompositions F = R- U = v* - R, where R is the rotation involved in F.
Remark. In the case that 7 is governed by an isotropic hyperelastic law, then t and v* commute, and it
follows that T = RN where 7FRN is the “‘elastic-rotation-neutralized” version of 7, defined as

RN —RT . 7. R (4)

Although T is symmetrical in this case, T may still be non-symmetrical (in general).

We may also perform a pull-back of T to Q. to obtain

T = (Fp )T -T- (Ffef)_T (5)

ref

which is (in general) a non-symmetric tensor even if T is symmetrical.

2.2. Hyperelastic—plastic model framework with kinematic hardening

Subsequently, we shall consider combined kinematic and isotropic hardening under isothermal condi-
tions. In analogy with the approach adopted for kinematically linear theory, we then introduce the free
energy ¥(C, B, %) in terms of tensorial quantities defined on Q (measured per unit volume of the compu-
tational domain ;). Here, we introduced the second order tensor f as a ““strain-like”” variables (defined on
Q) that represents kinematic hardening, whereas « is a scalar that represents isotropic hardening.
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From the second law of thermodynamics, we obtain in standard fashion the elastic law and the dissi-
pation inequality, which can be expressed as

~ oy e o e, o L _
$: =235 DET . LP+B:p+Kic=>0, T:L°P=T"":D°+ T .W° (6)
where LP & F7 . (F?)™! is the “material plastic strain velocity” on Q, D% (L?)®™ is the rate of plastic de-

formation and WP% (LP)*™" is the plastic spin.

Remark. Whenever T is symmetrical (such as for isotropic elasticity), it appears that W? does not affect the
dissipation and, thus, has no thermodynamic relevance.

Moreover, B and K are the “backstress” and “dragstress” respectively, defined as

- [ 2. b4
g O o oY )
op oK
By a push-forward of B to the current configuration Q, we obtain the corresponding back-stress b of the
“Kirchhoff type’:

b=F"-B-F' (8)
Plastically admissible states are now defined by the convex set 4:
B ={T.B,K|®(T".K) <0} ©9)

where @ is the yield function and T" = T — B is the reduced stress. It is noted that 7" is non-symmetrical in
the general situation.

2.3. Prototype model: transverse elastic anisotropy

Elastic—plastic decoupling will be assumed via an additive decomposition of ¥ into elastic and plastic
parts: ¥(C, B,%) = P(C) + y* (B, ). In order for ¥¢(C) to represent anisotropic elastic response, we first
establish the pertinent relations for orthotropy and then specialize to transverse isotropy. Moreover, we
shall express the elasticity relations in terms of the logarithmic elastic strain, defined as € = In(U) =
1In(C).

The directions of elastic orthotropy are defined by the orthonormal vectors a;,a, and a3, and the cor-
responding structural tensors are the dyads 4, = a; ® a; for i =1,2,3. According to the representation
theorem of a scalar function of two tensors, cf. Spencer (1980), we can now choose the integrity basis for P°
in terms of invariants of € and mixed invariants of A4, - €. Hence, we define the set of irreducible invariants
i1,ir and i3 of € as

i1:5:€, izzﬁléz, 1.325163 (10)
and the set of irreducible invariants ij5, and i, for i =1,2,3, as
ilA, :A,-ZE, iZAi:A[Iéz (11)

Now, we consider a form of orthotropic hyperelasticity, which is slightly restricted (as compared to the
most general possible) in the sense that the dependence on i; is dropped. In this case, it is possible to show
that the appropriate integrity basis consists of the six invariants in Eq. (11) such that we use the repre-
sentation ¥ (iia,, i2a,; f1a,, - - - , i2a; ). This format generates a class of elasticity models that contains the most
general orthotropic linear response at the restriction to small strains.
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We now obtain, in particular,

_ _dye SN Jove . dY° _ ,
T:ZC-d—_:Z[ C-A" 42— C-((e- 4™ : P™) (12)

allA,- DA;

where we introduced the “adjusted” dyads

o, de  d(In(C))

AN =4, P, Py ) 13

j ; e e (13)

The fourth order transformation tensor 2™ can be computed in closed-form using the Serrin’s formulae
(Simo and Taylor, 1991). We remark that 2™ — ™ for small deformations.

Next, we shall establish an explicit format for T such that the response will be linear at small defor-

mation. It can then be shown that Eq. (12) must take the form

T =

3 3
Z ¢iji1A/C . A}n + Z ®;,,C - ((&-4)"" : 2") (14)

=1 j=1 i

where @; = @;; for i, j =1,2,3 and &, for i = 1,2, 3 are nine constant coefficients to be determined upon
orienting the (Cartesian) coordinate system in such a fashion that a; will coincide with the base vectors.
Before doing this, we further simplify matters by introducing transverse isotropy. For convenience, we
assume that the plane x,x3 is isotropic, whereas the planes x;x, and x;x; are anisotropic with the same
properties. This gives @, = @13, Oy = @3 = P33, &5 = Pg, which are the five coefficients that can con-
veniently be expressed in terms of “physical” stiffness coefficients M), L;, G,L and G. Quantities with
subindex || refer to planes that contain the preferred direction (@) = a, whereas quantities without sub-
index refer to the isotropic plane, that is orthogonal to a. To simplify matters even further, we shall
subsequently assume that Gy = G, L = L and M| = k(2G + L), where k is a scalar factor (and k = 1 clearly
defines the completely isotropic response). We then obtain

T _ Tiso + Taniso (15)
where
T = Li\§ + 2Ge = (6°)™ : &, T = (k — 1)(2G + L)ijnC - A™ (16)

where (&°)™° is the usual constant elastic tangent stiffness tensor for isotropic response at small strains. It
appears that T™° is symmetrical, whereas T%"*° is non-symmetrical (since C and 4™ do not commute in
general).

2.4. Prototype model: plastic anisotropy — mixed hardening of metal plasticity

The von Mises yield function, which is expressed in terms of T" (for convenience), including mixed
isotropic and kinematic hardening reads

O=T —0,~K with T'=\/3T;, (17)

where |T| &f (T:T )1/ ? is the norm of the second order tensor 7. Proposing the plastic part of the free energy
in the same way as for small deformations, i.e.

PP = %(1 - V)H(Be)z +%FHK2 with Be - \/%“_;| (18)
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we obtain the usual hardening stresses, cf. Lemaitre and Chaboche (1990):
B=-%1-rHp, K=-rHi (19)

where H is the (uniaxial) hardening modulus and » € [0, 1] is a scalar.

As to the proper choice of the constitutive rate laws for the internal variables, it appears natural to adopt
the principle of maximum plastic dissipation from which the dissipation inequality in Eq. (6) would be
automatically satisfied. However, there are (at least) two features that call for a modification of this
principle: (1) Non-linear hardening of the Armstrong-Frederick type, (2) Replacement of B with a suitable
objective rate f with respect to the intermediate configuration Q in t}le evolution rule for B. Leaving (for the

moment) the crucial issue of how to choose a proper definition of , we propose the evolution rules

—_def 0P _ 3Tr

LPE e (PP = DP £ WP, DP = aMP™  with M - — 2 de 2
(FP) + WP, i wit o7~ 2T (20)

ht . AR\ SYym . g o SB

B =i(My)™" with My =—(M -~ (21)

K = iMy with MK:—(l—K > (22)

where B,, and K, are the saturation values of the kinematic and isotropic hardening, respectively.
In the case of plasticity, j is determined by the loading conditions (which are identical to the comple-
mentary Kuhn-Tucker conditions for a truly associative structure)

=0,  OT,K)<0, id(T,K)=0 (23)

Remark. In the case of viscoplasticity, jt may be defined in the spirit of Perzyna (1963) as

i :%n(qﬁ(Tﬁk)) (24)

where (@) is the overstress function (that increases monotonically and satisfies the condition n(®) = 0 if
@ <0), whereas ¢, is a relaxation time. The simplest choice, is a power law of the Norton type.

The formulation of the model is complete as soon as a constitutive assumption has been introduced for
the plastic spin Wpdéf(l_‘p)Skw, that is associated with FP. The simplest (and most common) choice is
WP = iM™, which corresponds to a fully associative flow rule. Another common choice is WP = 0.
Clearly, this results also follows from an associative flow rule in those cases when 7" is symmetrical. The
issue of how to chose WP is discussed further below.

In order to ensure that D > 0, it is sufficient that the following three conditions are satisfied simulta-
neously (indeed, to ensure that these conditions are satisfied is a key issue of the model definition):

(i) The flow rule is of the associative type (i.e. LP = M),
(i) B is symmetrical,, .
(ii1) The identity B : = B : B holds.

This is shown as follows: Combining (ii) with Eq. (19), we conclude that B is symmetrical. With Eq. (21) we
then obtain B : B = 1B : Mj;. Finally, this result together with (i) and (iii) gives
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0P 0P 0P B K?
R R - - >
D= M(T aT+B Y —+K: 3 >+ (BOCJF OC>/0 (25)

In order to ensure that the spatial back-stress b is symmetrical, then, according to Eq. (8), B - C must be
symmetrical. This condition can be satisfied only if B is non-symmetrical in the general case. For any given
B¥™ it is possible to determine B™ uniquely. However, for small elastic strains (U =~ §) it is sufficient to
require B to be symmetrical b~ R - B-R". To conclude, it appears to be difficult to satisfy both the
condition D > 0 and the condition that b is symmetrical simultaneously, unless the elastic deformations are
small. *

Our next task is to define g explicitly. To this end, we introduce B, as the (co/contravariant) pull-back
of B to Q., and we introduce its work-conjugated variable B, as the (contra/covariant) pull-back of g to
Q.. as follows:

Bref (Fp

ref

) -B- (chf)iT’\)ﬂref ( rcf) ﬁ Frcf (26)

A comparison with Eq. (5) shows that B is of the Mandel type in complete analogy with T,.. Corre-
sponding to the second term in Eq. (26), we introduce the mixed contra/covariant (Oldroyd/Rivlin) con-

vective rate fog, as follows:

B( defFref ﬁref ﬁ Lref ﬁ + E ’ Z‘}rjef with Lpefd;pr FP ! (27)

ref ref

which is non—symmetrlcal in general (even if B were symmetrical). We shall, therefore, propose B as follows:
2 def 1/ = Sym skw skw m Sym
F=3 (/‘<0R> + (B <0R>)T> = B = DL BN B DL Wi B W
~sym _ sym _ sym
— 2t ) 2 ()’ 29

Considering Eq. (28), we conclude that B is symmetrical even when f is non-symmetrical. It appears that

(B(OR))T ﬁ(Ro where ﬁ ro) 18 the mixed co/contravariant (Rivlin/Oldroyd) convective rate defined as

follows

Bo & (F) ™ ()™ (FR)T = B — BT (L) + (E2)" - " (29)

Next, we shall evaluate the consequences of the formulation in Eq. (28). Combining this formulation with
the rate law in Eq. (21), we obtain

) (b)) o0

which represents an evolution law for the symmetric part of  only, and this is true for isotropic as well as
anisotropic elasticity. Clearly, this fact leaves freedom in choosing a (separate) constitutive law for the
skew-symmetric part of .

To be specific, we shall here make the constitutive assumption that f

skw

=0, i.e. p is symmetrical, which

has consequences that are investigated next. Firstly, the proper definition of f is given by

ﬁ ﬁ ref ﬁ+ﬁ ret (31)

In this situation it appears that the rate § is of the Jaumann type. Secondly, since B and  commute; they
are in fact proportional, then it follows readily that
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Bi (W B—B-Wh)=2B-B): Wi =0 (32)
such that is concluded B: = B : B. If we, in addition, choose an associative flow rule (i), then all the
condition (i)—(iii) discussed previously for ensuring that D > 0 are satisfied. -

As to the issue of symmetry of b, we recall that B is symmetrical; however it is most unlikely that B and

C commute. Hence, it is not possible to achieve symmetry of b using this approach.

Remark. The alternative strategy would be to choose B™™ in such a way that b becomes symmetrical,
whereby the question arises whether it is possible to ensure that D > 0. However, it turns out that it is not

possible to show that B : = B : f in such a situation.
2.5. A comparison of kinematic hardening laws

In this subsection we consider special cases of the format in Eq. (31), which are obtained upon choosing
Qs appropriately. Moreover, we compare with a few suggestions in the literature.

e The PDN-format (WP, = WP) gives

B=B-Wr-B+p W (33)
which bears some resemblance with the models by Tsakmakis (1996), Svendsen et al. (1998); see below.

e The PRN-format (WP, = @ = Q¥ Re . (R")" and DP, = 0) gives
B=B—2 -B+B- 2 (34)
which was defined by Miinz et al. (1999). This format is identical to the PDN format when WP = QF.

e The UR-format (W?; = 0) gives B = B. This format represents a direct generalization to large deforma-
tions of the small strain model by Chaboche et al. (1979). It has been investigated by, e.g. Eterovic and
Bathe (1990). We note that the UR-format is identical to the PDN-format when W? = 0 (which is the
most basic assumption adopted in the constitutive rate law for FP). The corresponding model is known
to perform poorly in the case of simple shear, in which case the shear stress shows the pathological os-
cillatory behavior that is typical for Jaumann-type hypoelasticity-based formulations, cf. Svendsen et al.
(1998), Miinz et al. (1999).

A model that is related to the one suggested by Schieck and Stumpf (1995) is defined by
F.= RPE R . R®, which gives WP = Q% = R . (R®)". The corresponding convective rate, denoted the
SS-rate by Schieck and Stumpf (1995), is given as

B=p-0v. Brp-ov (35)

Finally, we mention a model proposed by Svendsen et al. (1998), which can be retrieved as follows: Let
transform as a second PK-stress tensor, such that . is obtained from

B = (F?)™"-B- (F) " (36)
Corresponding to Eq. (36), it is possible to introduce the contra/contravariant convective rate (of the

Oldroyd type) as follows:

B=Booy PP B (F) =L F— - (L") (37)
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2.6. Auxiliary kinematic considerations

We note that 2P can be computed from ﬁp and WP via pure kinematics. In order to derive the pertinent
relation, we combine the definition LP = FP - (FP)~" with the decomposition FP = R” - UP to obtain the
relations

DP = %RP . (Up . (Up)—l)sym ) (Rp)T (38)

WP = Q0 + 1R (0P (UP)')™™ - (RP)! (39)
Hence, for given DP, it is possible to solve for UP from Eq. (38) as follows:

UP =2/7": (R°)"-D°-RP) (40)
where .o/ is the fourth order tensor 2

oA =10F(U°) '+ (U") 'R +6x(UP) ' + (UP) ' @0) (41)

that possesses major as well as minor symmetry, i.e. o = Ay = A jyy = ;. Inserting UP from Eq.
(40) into Eq. (39), we obtain

Qv — W — WE(D": R, UP) (42)
where it is noted that W3 is a first order homogeneous function in its first argument.

The following special cases are of interest:

e No plastic spin (WP = 0) infers that Q° = —W}(D"; R, U) for given DP. )

e No plastic rotation (R” = ) infers that Q° = 0 and, hence, W® = Wf(DF; 4, U?) for given D".

* No elastic rotation (R” = R) infers that Q° = Q =R - R" and, hence, WP = Q + W2(D"; R, U") for
given DP.

3. Incremental format of constitutive relations
3.1. “Exact” integration algorithm

In quite standard fashion we apply the (exponential) Backward Euler rule, see Weber and Anand (1990),
to integrate the flow rule in (20): *

FP—A-"F° with A — exp(Aub™™ + AWP) (43)
From F = F - (FP)"" we then obtain

F=F". 47" with FEp. )t (44)
and we can compute C from the “trial” deformation C"*

C=F" F=4T".C".47" with C"™EceF)"."p (45)

Next, we consider the kinematic hardening and rewrite Eq. (29) as follows:

2 For second order tensors A and B, we define (4 ®B) 3 = AuBji, (A@B) 3, = AuBj.
3 Values at time #, are denoted by left superscript 7; however, to abbreviate notation the superscript n + 1 (denoting updated values
at time #,,1) is omitted.
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*

Bref = (Ffefyl ) B(OR) ’ Ffef (46)
Upon applying the Backward Euler rule to Eq. (46), we obtain

ﬁref = nﬁref + (Ffef)71 - At B (OR) ~ Ffef (47)

Now, introducing the operator A, in analogy with Eq. (43) via the decomposition F P = Ay - "F P and
combining with Eq. (26), we obtain from Eq. (47)

B=Fiy-"Bs- (Ffef)_l + AfB(OR) =Awer "B (Arr) ' + AfB(OR) (48)

Taking the symmetric part of Eq. (48), while using the hardening rule in Eq. (21), we finally obtain

B=B+Au(My)™ with BE (Awr-"B- (Awr) )" (49)

Finally, we integrate Eq. (22) to obtain

K ="K+ AuMy (50)
We may now summarize the constitutive relations as follows:

YC — C _;17T . Ctrial . ;171 -0

Yii=A" —exp(—AuM>™ — AtWP) = 0

Yy =B~ B Au(My)™™ =0 (51)
Yo=x—-"k—AuM; =0
Au=0, &<0, Aud=0

where E is defined as

= _JR-("R*)" -"B-"R" - (R*)" PRN-model

p={ & OR (52)
-PB-A PDNSv-model

The PDNSv-model is defined by Egs. (36) and (37), cf. Svenden et al. (1998). It is denoted that A is a
function of Ay, M and AtW". Both M and M, are functions of C and B via the relations T(C) and B(p),
whereas M, is a function of « via the relation K (). Moreover, the flow function @ is a function of C, g and
x via the functional relations T(C), B(B) and K (i), which were given in Egs. (16) and (19), respectively. It
turns out that these relations are completely analogous to those pertinent to geometrically linear theory.
In the case of plastic loading, we may abbreviate Eq. (51) (on matrix form) as follows: ¥ (X) = 0, where

X contains the components of all unknowns, whereas Y contains the corresponding residuals, i.e.
X: [C7 ‘:I_la B?Kv Alu]T

T . (53)
Y =[Ye, Yiu, Y5, Y, Yy, with Yy, =@

It remains to define AtWP. The “main” situation is that the flow rule is associative, in which case
AtWP = AuM™ . Other special cases are:

e No plastic spin (W?® = 0) infers that AtzW?® = 0. (This is also obtained in the case of an associative flow
rule when M is symmetrical, e.g. for isotropic elasticity.)

e No plastic rotation (R® = §), infers that AtWP = AuWE(M™™; 5, UP)

e No elastic rotation (R = R) infers that
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AtWP =In(R -"R") + AuW?h(M™™; R, U)

In order to obtain the last result (for R° = R) we integrated the relation @ = R - R using the exponential
Backward Euler rule, i.e.

exp(ArQ) =R - ("R)" (54)
which is incrementally objective.
3.2. “Linearized” integration algorithm
When C, C"™ and 4 (and M) commute, it is possible to use the summation rules for logarithms to
obtain from Eq. (45) the commonly used decomposition
In(C) = In(C™) — 2AuM>™ (55)

This is, indeed, the case for isotropic elasticity and purely isotropic hardening. However, when non-
coaxiality is present Eq. (55) introduces additional approximation (truncation error). For example, the spin
WP is completely lost. Nevertheless, it may be tempting to use this approximation, at least in combination

with the replacement of B in Eq. (52) with "f defined as
g )R ("'R*)"-"B-"'R”- ("R")"  PRN-model (56)
"d.nB.rA" PDNSv-model

The resulting algorithm represents mixed implicit/explicit integration of the pertinent evolution equations

Remark. It is noted that the formulation in Eq. (56) does not follow from simply setting R* = "R” in Eq.
(52), which would infer that g =", pertinent to the UR-format.

Summarizing the linearized algorithm (subsequently abbreviated BE;;,), we note that the formulation
will be identical to that of small strains, which has since long been utilized for isotropic hardening. In
particular, in the case of linear hardening, a linear relation in Ay is obtained; hence, no iterations are
necessary to solve the “local problem” for given C'™.

3.3. Local problem and ATS-tensor

The ATS tensor &9 on € is defined from the generic relation

. ~dS>
#3=222 (57)
which is derived in the following fashion: Differentiating the first part of basic relation (2), we obtain

- Serlemr s ()« () aem ] e

(58)

() & @E) ) 2

where we used the relation (43) and introduced the elastic tangent stifiness %5 = 2dS,/dC. The tensors
da™! /dC and dC/dC can then be computed via the Jacobian J of the local problem (53):

dx ) 4

X(X(Ctrial); Ctrial) _ Q thrial ~ deal =_J 3 7t—rial

(59)
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4. Numerical results
4.1. Preliminaries

At the numerical investigation of simple shear and unconstrained shear the following values of the
material parameters were used: £ = 210 x 10> MPa, v = 0.3, g, =500 MPa, H =1.5x 10° MPa. Only
linear hardening, defined by K, = B,. = oo, was considered, since the nonlinear hardening feature has little
significance for the present purpose of analysis. The angle 0 defines the “direction of elastic anisotropy”, as
shown in Fig. 2a, whereas the simple shear kinematics is given in Fig. 2b.

4.2. Stress—strain response relation for simple shear — model performance

In Figs. 3 and 4 we compare the model performance in simple shear of the PRN-model (Fig. 3) and the
PDNSv-model (Fig. 4) for both isotropic and kinematic hardening. Isotropic elasticity and associative flow
(WP =0) are assumed. The in-plane stress ans back-stress components in the spatial format are plotted

) T9
A A L
a +—>
T~ |
/ i
1 fatan(y) | L
]
TN :
I3 z1 I

Fig. 2. (a) Elastic anisotropy direction defined by 6, (b) kinematics for simple shear and the relation dC"* /dC = ("F?) " ® ("F®) ",
which is obtained from Eq. (45).

2500

2000

—— linear kinematic hardening.~~ —— linear kinematic hardening
2000 | ~emme linear isotropic hardening 1 1500 | ====* linear isotropic hardening 1

! g T
1500 L 12 1000}
1 F
000 500(
500
b ol ]
T 0
~500(
-500
1000} -1000f
-1500 1 -1500f
- " . . - -2000 : ~
2000, 1 2 3 4 5 0 1 2 3 4 5
o Y

Fig. 3. In-plane stress = and back-stress b components versus shear deformation y for the PRN-model with isotropic elasticity, linear
kinematic hardening (» = 0) and linear isotropic hardening (r = 1).
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2500} | —— linear kinematic hardening -] — linear kinematic hardenin /
""" linear isotropic hardening ----linear isotropic hardening
2000¢ 15001 1
15001 b
1000f 1000} b 12
5001
T o 500}
_500 L
~1000} b 0 T
1500} 22
%% 5% 1 2 3 a 5
Y

Fig. 4. In-plane stress = and back-stress b components versus shear deformation y for the PDNSv-model with isotropic elasticity, linear
kinematic hardening (» = 0) and linear isotropic hardening (r = 1).

against the shear deformation 7. In the case of kinematic hardening, we conclude: For the PRN-model the
normal stresses are ‘“‘anti-symmetrical’’ in the sense that 7;; = —15; and b;; = —b,,, whereas this is not so
for the PDNSv-model. However, the shear stress satisfies the assumption of linearity better for the PDNSv-
model. The next series of computations concerned the influence of plastic rotation, whereby the different
strategies for imposing RP are defined by the appropriate choice of AtWP. Three strategies were considered:
(i) Associative flow, (ii) no plastic rotation (RP = é), (iii) no elastic rotation (R? = R). The corresponding
choice of AtW?® was defined in Section 3.1. Firstly, the three strategies were checked in conjunction with
isotropic elasticity, and it was readily confirmed (not shown here) that the amount of plastic rotation does
not have any effect on the results. (This fact, which is expected due to the isotropic elasticity, was pointed
out by Simo (1988).) Secondly, the effect of rotation was found to be considerable in the presence of an-
isotropy (6 = 90°) which is shown in Fig. 5 for the PRN-model.

3000
[ PRN-model, associative |
25001 ---. PRN-model, RP=5
—= PRN-model, R°=R
2000 —
15001 7y, (same) e
1000} -
T
500 1
T 0
-500f L ———
\ron .
-1000
-1500}
-2 L L L L
OOOO 1 2 3 4 5
Y

Fig. 5. In-plane stress t components versus deformation y
kinematic hardening. Influence of plastic rotation.

for the PRN-model with transversely isotropic elasticity (6 = 90°) and
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Since the shear modulus was isotropic (G| = G), only the normal stresses were affected by the rotation. If
of interest to assess the magnitude of non-symmetry of b, which may be measured as |5*"|/|b|. Indeed, since
the elastic deformations were small, this ratio was found to be very small.

4.3. Stress—strain response for simple shear — influence of “linearization” in the integration algorithm

A series of computations were carried out to demonstrate the (possible) effect of “linearization” of the
incremental algorithm for the simple shear problem. Figs. 6 and 7 show results for the PRN-model with two
different resolutions of the integration algorithm (uniform timesteps), whereas Figs. 8§ and 9 show the
corresponding results for the PDNSv-model. The significance of “linearization” is noticeable for both

3000 T

- converged solution
25001 - "linearized” elastic law, 10 timesteps H
---+ "exact" elastic law, 10 timesteps

1500
1000
500

T o
-500
-1000

-1500

~200 . + : :
%

Fig. 6. In-plane stress T components versus shear deformation y for the PRN-model with isotropic elasticity, associative flow rule and
kinematic hardening. Influence of algorithm “linearization”.

3000 r ; . .
|| — converged solution i

200 ... "exact" algorithm, 50 timesteps

2000} | — ‘linearized" algorithm, 50 timesteps i

15001

T12

Fig. 7. In-plane stress T components versus shear deformation y for the PRN-model with isotropic elasticity, associative flow rule and
kinematic hardening. Influence of algorithm “linearization™.
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4000 v v S —

——  converged solution
| | ==== ‘“exact" algorithm, 10 timesteps
8000y | —  “linearized" algorithm, 10 timesteps

2000

1000}

-2000
0

Fig. 8. In-plane stress T components versus shear deformation y for the PDNSv-model with isotropic elasticity, associative flow rule
and kinematic hardening. Influence of algorithm “linearization”.

models. However, it is also confirmed that even the linearized algorithm ensures convergence to the true
answer when the time increments become small; i.e. this method is at least consistent (of first order). It is
also noticed that the convergence is slower for the PDNSv-model.

The additional truncation error due to the non-coaxiality when the logarithm product formula is used is
evaluated a posteriori. One possibility is to use the “exact” format and to compare the “linearized” elastic
strains Cinear) defined as

Citnewr) = exp(In(C™™) — 20uM*™) (60)

with the “exact” elastic strain C(exact>. The error e is defined as

e = |C(exacl) - C(linear)|
|C(exacl)|

and is shown in Fig. 10 for the PRN-model (for the set of data used in Figs. 6 and 7). Furthermore, Fig. 11
shows results for the PRN-model in the presence of transversely isotropic elasticity, which leads to even
larger truncation errors when the linearized algorithm is used.

The last series of computations show the effect of linearization when the unconstrained shear problem *
is analyzed using finite elements (16 triangular elements with piecewise linear displacements). Even in this
case the influence of discretization errors in time become pronounced, cf. Fig. 12.

(61)

5. Concluding remarks

Certain consequences of elastic and plastic anisotropy for a particular class of hyperelastic—plastic
models with kinematic hardening were investigated in this paper. In particular, we have considered the

4 Referring to Fig. 2(b), the displacement field is represented by the components u;(X;,X3), X; € (0,L). The unconstrained shear
problem is defined by the boundary conditions u;(X;,0) = 0,u; (X;,L) = @ (¢) (prescribed) and u»(X;,L) = 0.
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4000 ™ T T y 254

—— converged solution
----- "exact" a{gonthm, 50 timesteps
3000 | ——  *linearized" algorithm, 50 timesteps|

2000f ™

10001

-10001

-2000

Fig. 9. In-plane stress T components versus shear deformation y for the PDNSv-model with isotropic elasticity, associative flow rule
and kinematic hardening. Influence of algorithm “linearization”.

0.035 r . . .
—— 50 timesteps
0.03} | —=— 20 timesteps
—— 10 timesteps
0.025f
0.02f
0.015f
0.01f
0.005f 1
gt 1 1 L
0 1 2 3 4 5

Fig. 10. Error due to non-coaxiality for the PRN-model with isotropic elasticity, associative flow rule and kinematic hardening. In-
fluence of time discretization.

PRN-model, which is shown to be thermodynamically consistent but is conceptually flawed by the fact that
the backstress is non-symmetrical. These properties are shared by the PDNSv-model, which was used for
comparison. However, for small elastic strains the non-symmetry becomes negligible.

Numerical investigations carried out for the case of simple shear confirmed that the amount of plastic
rotation is of no consequence for elastic isotropy. However, in the presence of elastic anisotropy the plastic
rotation significantly affects the results (as expected). As to the issue of a “proper”” implementation of the
exponential backward Euler integration scheme in the presence of non-coaxiality (arising from anisotropy),
the numerical results showed that it is important to account for this non-coaxiality in order to avoid ex-
cessive truncation errors. The classical algorithm for the logarithmic elastic law, which strongly resembles
the small strain format, should thus be used with great care.
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Fig. 11. In-plane stress T components versus shear deformation y for the PRN-model with transversely isotropic elasticity (6 = 90°),
associative flow rule and kinematic hardening. Influence of algorithm “linearization”.
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Fig. 12. Horizontal force versus displacement (of the top surface) for the unconstrained shear problem. Influence of algorithmic
“linearization”: exact (x), linearized (o), converged result (- - -).
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